Use of decellularized porcine liver for engineering humanized liver organ.
نویسندگان
چکیده
BACKGROUND New bioartificial liver devices are needed to supplement the limited supply of organ donors available for patients with end-stage liver disease. Here, we report the results of a pilot study aimed at developing a humanized porcine liver by transplanting second trimester human fetal hepatocytes (Hfh) co-cultured with fetal stellate cells (Hfsc) into the decellularized matrix of a porcine liver. MATERIAL AND METHODS Ischemic livers were removed from 19 Yorkshire swine. Liver decellularization was achieved by an anionic detergent (SDS). The decellularized matrix of three separate porcine liver matrices was seeded with 3.5 × 10(8) and 1 × 10(9) of Hfsc and Hfh, respectively, and perfused for 3, 7, and 13 d. The metabolic and synthetic activities of the engrafted cells were assessed during and after perfusion. RESULTS Immunohistologic examination of the decellularized matrix showed removal of nuclear materials with intact architecture and preserved extracellular matrix (ECM) proteins. During perfusion of the recellularized matrices, measurement of metabolic parameters (i.e., oxygen concentration, glucose consumption, and lactate and urea production) indicated active metabolism. The average human albumin concentration was 29.48 ± 7.4 μg/mL. Immunohistochemical analysis revealed cell differentiation into mature hepatocytes. Moreover, 40% of the engrafted cells were actively proliferating, and less than 30% of cells were apoptotic. CONCLUSION We showed that our decellularization protocol successfully removed the cellular components of porcine livers while preserving the native architecture and most ECM protein. We also demonstrated the ability of the decellularized matrix to support and induce phenotypic maturation of engrafted Hfh in a continuously perfused system.
منابع مشابه
Decellularization and Solubilization of Porcine Liver for Use as a Substrate for Porcine Hepatocyte Culture
Biologic substrates, prepared by decellularizing and solubilizing tissues, have been of great interest in the tissue engineering field because of the preservation of complex biochemical constituents found in the native extracellular matrix (ECM). The integrity of the ECM is critical for cell behavior, adhesion, migration, differentiation, and proliferation that in turn affect homeostasis and ti...
متن کاملThe use of whole organ decellularization for the generation of a vascularized liver organoid.
UNLABELLED A major roadblock to successful organ bioengineering is the need for a functional vascular network within the engineered tissue. Here, we describe the fabrication of three-dimensional, naturally derived scaffolds with an intact vascular tree. Livers from different species were perfused with detergent to selectively remove the cellular components of the tissue while preserving the ext...
متن کاملOrthotopic transplantation of decellularized liver scaffold in mice.
End-stage liver disease is a life threatening health problem to millions of people worldwide. Orthotopic liver transplantation is the only therapy for the definitive cure at the present time. However, persistent shortage in donor organs limits the opportunity for patients to receive this treatment. Liver tissue engineering aims to overcome this restriction by generating functional tissue constr...
متن کاملScale-dependent mechanical properties of native and decellularized liver tissue.
Decellularization, a technique used in liver regenerative medicine, is the removal of all the cellular components from a tissue or organ, leaving behind an intact structure of extracellular matrix. The biomechanical properties of this novel scaffold material are currently unknown and are important due to the mechanosensitivity of liver cells. Characterizing this material is important for bioeng...
متن کاملAssessing porcine liver-derived biomatrix for hepatic tissue engineering.
Acellular, biologically derived matrices such as small intestinal submucosa have been extensively utilized to induce tissue regeneration and remodeling of connective tissue, vascular grafts, and urinary bladder; however, decellularized scaffolds have not been explored for their potential utility in hepatic tissue engineering. In the case of both extracorporeal hepatocyte-based devices and impla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of surgical research
دوره 173 1 شماره
صفحات -
تاریخ انتشار 2012